

Systems Engineering

Motion Control of Peristaltic Sorting Machine by

the Application of Reinforcement Learning

Method of Actor-Critic

(Assignment - 2)

Submitted to:

Prof. Dr. Andreas Schwung

Supervised by:

Mr. Fabian Westbrink

Submitted by:

Murtaza Khuzema Basuwala (10062949),

Nutakki Pradeep Chakravarthi (10062965)

SEEM MSc Program

WS-2018/19

2

Table of Contents

1. Introduction ... 3

2. Implementation with Keras.. 3

2.1 Implementation ... 3

2.2 Results and Evaluation .. 6

3. Implementation with Pytorch .. 10

3.1 Entropy Loss Function .. 10

3.2 Loss Function .. 11

3.3 Implementation ... 11

3.4 Results and Evaluation .. 16

4. Conclusion ... 20

References .. 28

3

1. Introduction

 The task of this assignment is to implement the actor-critic algorithm to control the

motion of the peristaltic sorting machine in order to reach the parcel position in the most

efficient way. To implement the actor-critic methodology two different approaches were

used. The first implementation was done using Keras library where there was no exploration

employed and the second implementation was made with Pytorch library where entropy was

employed in order to explore the state space and try out all the possible actions to get the

optimal policy and achieve the maximum cumulative reward. From the given environment of

the sorting machine the state, action, and rewards are described as follows,

Table 1: Given State, Action and Rewards structure

State

State = [Actuator position / Packet Position / Actuator Velocity]

State space of nine elements where the first three elements give

information about the actuator position, the next three elements tells

about the parcel position and the last three elements give the

velocity of the actuators in x, y and z axis respectively.

Action

An array of three elements with possible values of 1,0 and -1

Discrete action space with 27 (3 × 3 × 3) possible action

combinations.

Each action represents the direction of acceleration for the actuator

in x,y and z axis.

Rewards

An action is performed, and the target reaches the parcel position,

then R = 1

An action is performed, and the target does not reach the parcel

then, R -0.1

An action is performed such that the target should reach the parcel

position but it lands in a different position then, R = -10

As discussed that the actor-critic uses two neural networks, the actor defines the current

policy and therefore it takes an action based on the current policy. The critic on the other

hand, estimates the value for each state based on the current policy defined by the actor. The

actual reward is then compared to the value estimated by the critic which gives the error.

After certain number of steps the, agent updates its policy and value by bootstrapping in order

to improve its predictions in the future.

2. Implementation with Keras

 2.1 Implementation

a) Libraries

Figure 1 shows the different relevant libraries that are imported for the execution of

the algorithm

4

Figure 1: Libraries imported

b) Hyper Parameters

Figure 2 shows the hyperparameters which are chosen based on trial and error method

Figure 2: Hyper Parameters

c) Actor :

The actor neural network as shown below in figure 3 is created using the sequential

model to create a linear stack of three layers.

Figure 3: Actor Neural Network

The first layer is a dense layer of 32 neurons(random selection) with an input dimension of

nine since there are nine elements in the states. Rectified Linear Unit (RELU) is chosen as the

activation function which gives the output as zero if the input is less than zero and output

equals to input if the input is greater than zero. RELU also gives the benefit that if there are

many neurons defined where almost half of the inputs have negative values then due to the

characteristics of RELU (output is zero if the input is negative) only those neurons are fired

which carry a positive value. The second layer is a dense hidden layer with 32 neurons and

with the same activation function RELU. The third layer is the output layer which has 27

neurons because of the 27 possible action combinations as discussed in table 1.

5

 The softmax activation function is chosen for the output layer which gives the highest

probability of a particular action from the 27 possible actions based on the current policy. The

actor takes the action 𝑎 and enters a new state 𝑠𝑡+1 while gaining a reward 𝑟 along the way.

The categorical cross entropy loss function is chosen to train the neural network based on the

loss between the computed output and target output. Finally, Adam optimizer algorithm is

chosen to update the network weights based on the given learning rate for the actor.

d) Critic

Similarly like actor, the critic neural network is also created with a sequential model

of three layers. Figure 4 shows the critic neural network.

Figure 4: Critic Neural Network

The neural network for the critic is similar to that of the actor but the only difference is in the

output layer which has only one neuron which outputs the value function of the current state.

Moreover, the linear activation function is used in the output layer as it outputs only one

value i.e. the action value function of the state. Based on the action 𝑎 taken by the actor the

agent lands up in a new state 𝑠𝑡+1 and achieves a new reward 𝑟. The critic estimates the value

of the state based on the current policy which is defined by the actor.

e) Training the Network

The variable ‘target’ and ‘advantages’ are used in training the network. Using these

variables as baseline the neural network estimates the loss and updates the weights of the

network. The ‘advantages’ variable is used by the actor-network to update itself while the

critic network is updated by estimating its loss using the ‘target’ variable. Figure-5 shows

how the network is trained.

Figure 5: Training the Network

6

f) Working the Network

Figure 6 shows how the algorithm is connected to the give environment in order to initiate the

training of the network.

Figure 6: Working of the network

As discussed before that the action is an array of three elements with 27 possible

combinations, therefore to work these arrays with the neural network, indexing method is used. A list

of numbers ranging from 0 to 27 is given as the input to the output layer of the actor-network. The

actor based on the current policy chooses the highest probable index number from this list which is

estimated by the ‘softmax’ function. The variable ‘action_index’ carries all the 27 possible

combinations of the action arrays. Based on the index number obtained from the actor-network the

action is selected by just looking for the corresponding action array in the ‘action_index’ for that

index number.

For every episode in the while statement, the reward from the environment is collected and

stored in the variable ‘score’ which sums the total reward collected for every episode. A negative

reward of 10 is given if the total score of the collected reward is less than 49 or if the condition

becomes true. On the other hand, if all the episodes are completed then the total score collected by

accumulating all the rewards are stored if the score is 50 else +10 is added to the score.

Note: The full code is attached in Appendix-1.

 2.2 Results and Evaluation

There was three simulations performed based on a different number of episodes which are

shown below. All simulation is performed on four hidden layers and 25 neurons.

❖ Simulation - 1

Episodes = 800

7

The set of hyperparameters chosen for this simulation were,

Actor learning rate = 0.0001

Critic learning rate = 0.05

Rewards (in the environment):

 R = 1; R = -0.1; R = -0.2

Figure 7: Simulation-1 (Keras) [*]

From the above figure, it's concluded that the agent starts exploring and takes actions which

gets him high rewards. The highest score achieved by the agent is 50. Moreover, the agent

learns something but the mean of the rewards stay near zero.

❖ Simulation - 2

Episode - 2500

The set of hyper parameters chosen for this simulation were,

Actor learning rate = 0.0001

Critic learning rate = 0.005

Rewards (in the environment):

 R = 1; R = -0.1; R = -0.2

8

 Figure 8: Simulation-2 (Keras)[*]

From figure 8, The results are the same as before, but the mean of the reward is between -1 to

1. The highest score achieved by the agent is 5.

❖ Simulation - 3

Episode - 10000

The set of hyper parameters chosen for this simulation were,

Actor learning rate = 0.0001

Critic learning rate = 0.0002

Rewards (in the environment):

R = 1; R = -0.1; R = -0.2

 Figure 9: Simulation-3 (Keras) [*]

From figure 8, The results are the same as before, but the mean of the reward is between -1 to

1. The highest score achieved by the agent is 5.

9

❖ Keras – Batch Normalization

In order to optimize the learning batch normalization was implemented in the actor and

critic network which gets the input from the input layer calculates its mean and variance and

then applies normalization. This normalized output is then sent to the activation function.

Theoretically, it is proved that batch normalization helps in achieving faster convergence.

Figure 10 shows the implementation of batch normalization in the networks [1].

Figure 10: Actor-Critic Batch Normalization

❖ Simulation - 4

Episode – 2500

The set of hyperparameters chosen for this simulation were,

Actor learning rate = 0.001

Critic learning rate = 0.05

Rewards (in the environment):

 R = 1; R = -0.1; R = -0.2

10

Figure 11: Simulation-4 [*]

From the above simulations, it was concluded that one of the reasons for no gradual increase

in the mean rewards may be due to insufficient exploration. So to implement exploration

3. Implementation with Pytorch

3.1 Entropy Loss Function

In order to encourage exploration, entropy is introduced into the loss function which

avoids premature convergence and finds the most suitable policy. Entropy works by bringing

all the states to the same probability because the gain in information is higher when all the

states are at the same level of probability and less if one states dominate the other. Bringing

all the states to the same probability makes the network work very hard in choosing a

particular action and this makes the network to choose any random actions which encourages

exploration [2]. The equation for entropy is given as,

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log𝑏 𝑃(𝑥𝑖)

𝑛

𝑖=1

A high probability action is penalized by increasing the loss through the entropy term which

brings all the actions to almost the same probability. The entropy loss is given by just taking

the above entropy equation and plugging in the policy instead of the random value 𝑥. A

scaling factor 𝛽 is used to scale the entropy loss and a relatively low value is chosen so that it

does not dominate the loss that is received from the loss function [2]. The entropy loss

function is given by,

𝐻(𝜋(𝑎𝑡|𝑠𝑡,𝜃𝜋)) = − ∑ 𝜋(𝑎𝑡|𝑠𝑡,𝜃𝜋) log 𝜋 (𝑎𝑡|𝑠𝑡,𝜃𝜋)

𝑡

11

3.2 Loss Function

The above entropy loss function is subtracted from the standard policy gradient loss

function i.e.

𝐿𝜋 = − log (𝜋(𝑎𝑡|𝑠𝑡,𝜃𝜋)) 𝛿𝑡 − 𝛽𝐻(𝜋(𝑎𝑡|𝑠𝑡,𝜃𝜋))

The term 𝛿𝑡 is the TD error at step t which is in product with the log of the probability of

taking a certain action a at time t which makes up the overall policy gradient loss function.

The policy gradient loss function is used to maximize the expected future log rewards. Now,

this loss function is added with the entropy loss function which adds more cost to the actions

that quickly dominate over other actions and doing this initiates exploration. Since in Pytorch

it’s not possible to maximize a function therefore the negative of these functions is minimized

which is mathematically equivalent to maximization [2]. The value loss is also added in this

loss function which is the mean square error (MSE) of the predicted value of the state and the

discounted rewards i.e.

𝐿𝑣 = (𝑣(𝑠𝑡,) − 𝐺𝑡,)
2

To initiate learning a scaling factor Ϛ is used for scaling the value function gradient which

brings the gradient to the same magnitude so that they don’t out pass each other. The final

loss function is given by [2],

𝑚𝑖𝑛 𝐿𝜋 = − log (𝜋(𝑎𝑡|𝑠𝑡,𝜃𝜋)) 𝛿𝑡 − 𝛽𝐻𝜋(𝑎𝑡|𝑠𝑡,𝜃𝜋) + Ϛ(𝑣(𝑠𝑡,) − 𝐺𝑡,)
2

 (A)

Figure 9 below shows the visual representation of the above equation

Figure 12: Loss function [2]

3.3 Implementation

a) Importing Libraries

Figure 11 shows the relevant libraries that are imported for the execution of the

algorithm

12

Figure 13: Libraries Imported

b) Network Architecture

Instead of using two different neural networks which are used in the case of Keras

where one predicts the policy and other predicts the value, a single network is constructed

here from which both the value and policy are estimated. This construction is known as two-

headed A2C Network [2]. Figure 12 shows how a single network is headed to estimate both

policy and head.

Figure 14: Two-Headed A2C Network [2]

13

Figure 15: Network Architecture

14

The network architecture as shown in figure 15 is constructed by using ‘OrderedDict’ where

every even layer is a linear layer and every odd layer is an activation function. The ‘linear’

layer is equivalent to the ‘Dense’ layer in Keras. There are four hidden layers chosen for each

actor and critic neural network. The learning rate defined here is the same for both the actor

and critic since they both share the same network. The policy head and value head defined in

the figure corresponds to the respective actor and critic network. Once again, Adam optimizer

is chosen to update the network weight based on the learning rate.

c) Estimating various parameters

Figure 16 shows the various function used to estimate different parameters. The

function ‘def predict’ is used to predict the probability distribution for the action and the

value for each state. The function ‘get_body_output’ converts the states into float tensors

which are better computable. The next function ‘get_action’ chooses the index of the action

based on the probability estimated by the ‘softmax’ function. Finally, the ‘get_log_probs’

function estimates the logarithmic of the probability estimated by the ‘softmax’ function

which will be used the calculate the loss function.

Figure 16: Predicting the probability, value, action based on probability and the logarithmic

probability for the loss

d) Computing the Losses

The entropy loss, policy loss and the value loss which are discussed in the equation

(A) are computed as shown in figure 17. These losses are the important pillars of the

algorithm as they are used to ensure that the agent is not captivated in a local minimum rather

it explores all the possible states. The policy loss and the entropy loss are maximized which

ensures taking good reward action in the future and increase exploration while the value loss

15

is minimized which reduces the error in the predicted value of the state and the discounted

rewards.

Figure 17: Computing Losses

e) Updating the Losses

The losses are updated by first computing their gradients using the ‘backward()’

function and then it is updated. The total policy loss is calculated by measuring the difference

between the policy loss and the entropy loss. The overall loss is computed by summing up the

policy loss, entropy loss, and value loss. The network is then updated by the computed

gradient using the ‘optimizer’ function.

Figure 18: Computing Losses

By updating the weights of the network using these losses push the gradient of the policy in

the right direction to choose the best action for a particular sate to gain maximum cumulative

reward.

Note: The code is attached in Appendix-2

16

3.4 Results and Evaluation

The results of the simulation which are performed for different episodes are discussed

below.

❖ Simulation-1 (Episodes-5000; Epoch-10)

Hyperparameters:

• Learning rate = 1.3 × 𝑒−3

• 𝛽 = 0.01

• Ϛ = 0.1

• No of hidden layers = 2

• No of neurons = 25

• Reward (Environment) = +10, -0.1, -0.2

Figure 19: Simulation-1 [*]

From figure 14, it is observed that the agent initially takes actions which give negative

rewards. Approximately after 35000 episodes, the agent takes actions which give high

rewards and then continues it consistently to take positive until the end of the end of the

episode. From the policy loss graph, it is seen that the policy changes significantly until it is

updated for at least 25 times and after that, it stabilizes following a single policy. The value

loss remains to be zero until it has been updated for approximately 36 times but after that,

there is a large difference in the value estimated and the discounted rewards. The entropy loss

17

is zero initially but after updating for about 40 times the exploration increases gradually

reaching maximum at the end of the episode.

❖ Simulation-2 (Episodes-5000; Epoch-10)

Hyperparameters:

• Learning rate = 1.7 × 𝑒−4

• 𝛽 = 0.005

• Ϛ = 0.01

• No of hidden layers = 4

• No of neurons = 25

• Reward (Environment) = +10, -0.1, -0.2

 Figure 20: Simulation-2 [*]

The agent manages to achieve a few positive rewards but there was no learning observed. From

the loss graph, there is considerable change in the policy and value till an update of 100 after which it

gets stabilized.

❖ Batch Normalization

In order to improve the learning of the agent a layer of batch-normalization was

implemented in the neural net which calculates the mean and the variance of the inputs,

normalizes them and sends as an output to the next layer. Figure 16 shows the

implementation of batch normalization in the network.

18

Figure 21: Batch Normalization [*]

❖ Simulation-3 (Episodes-50000; Epoch-10)

Hyperparameters:

• Learning rate = 1.4 × 𝑒−4

• 𝛽 = 0.001

• Ϛ = 0.1

• No of hidden layers = 4

• No of neurons = 25

• Reward (Environment) = +10, -0.1, -0.2

 Figure 22: Simulation-3 [*]

From figure, it is illustrated that the agent initially started taking actions which gave

fewer rewards and improved slowly in gaining more rewards later. The agent did learn

something but the learning process was not enough. The policy loss and value loss are on the

same scale having an overshoot in the respective losses initially, and then being stable

throughout all the updates.

19

❖ Simulation- 4 (Episodes-10000; Epoch-10)

Hyperparameters:

• Learning rate = 5 × 𝑒−4

• 𝛽 = 0.001

• Ϛ = 0.001

• No of hidden layers = 4

• No of neurons = 32

 Figure 23: Simulation-4 [*]

❖ Simulation- 5 (Episodes-50000; Epoch-10)

Hyperparameters:

• Learning rate = 5.5 × 𝑒−4

• 𝛽 = 0.0001

• Ϛ = 0.01

• No of hidden layers = 4

• No of neurons = 25

20

 Figure 24: Simulaion-5[*]

4. Conclusion
The results from both the algorithm (Keras and Pytorch) reveals that the agent learns

something throughout the episode. Initially, due to lack of exploration, the agent was thought of being

constrained in a local minimum which allowed it to take only a few sets of actions from the 27

different possibilities. To deal with this issue entropy was implemented to encourage exploration and

also the policy and value loss were back propagated in order to update the gradients of the network.

The main challenge faced during this assignment was to set the right hyperparameters for both the

algorithms. Many simulations were performed by observing the graph obtained and then increasing or

decreasing the learning rate and other hyperparameters in suitable steps. The agent performed learning

at some places but it was not consistent throughout. Therefore, it is concluded that with the right set of

hyperparameters the agent can converge to an optimum result. Hence, more tuning of these

hyperparameters is needed to achieve good learning.

21

❖ Appendix-1 [3]:

Coding with Keras

"""

ALGORITHM - 1

System Engineering Assignment-2

@author: Murtaza Khuzema Basuwala, Pradeep Nutakki Chakravarthi

The algorithm is designed for PSM (Peristaltic Sorting Machine) environment

This code is referenced from 'https://github.com/rlcode/reinforcement-learning'

"""

import sys

import environment_seminare

import pylab

import numpy as np

import itertools

from keras.layers import Dense, Dropout, BatchNormalization, Activation

from keras.models import Sequential

from keras.optimizers import Adam

EPISODES = 2500

A2C(Advantage Actor-Critic) agent for the PSM_Sorting_Machine

class A2CAgent:

 def __init__(self, state_size, action_size):

 self.render = False

 self.load_model = False

 # get size of state and action

 self.state_size = state_size

 self.action_size = action_size

 self.value_size = 1

 # Hyper-parameters

 self.discount_factor = 0.99

 self.actor_lr = 1.3e-3

 self.critic_lr = 0.05

 # create model for policy network

 self.actor = self.build_actor()

 self.critic = self.build_critic()

 if self.load_model:

 self.actor.load_weights("D:\PSM_actor.h5")

 self.critic.load_weights("D:\PSM_critic.h5")

 # approximate policy and value using Neural Network

 # actor: state is input and probability of each action is output of model

 def build_actor(self):

 actor = Sequential()

 actor.add(Dense(25, input_dim=9))

 actor.add(BatchNormalization())

 actor.add(Activation("relu"))

 actor.add(Dense(25, activation='relu'))

 actor.add(Dropout(0.2))

 actor.add(Dense(27, activation='softmax', kernel_initializer='he_uniform'))

 actor.summary()

 actor.compile(loss='categorical_crossentropy', optimizer=Adam(lr=self.actor_lr))

 return actor

 # critic: state is input and value of state is output of model

 def build_critic(self):

 critic = Sequential()

22

 critic.add(Dense(25, input_dim=9))

 critic.add(BatchNormalization())

 critic.add(Activation("relu"))

 critic.add(Dense(25, activation='relu'))

 critic.add(Dropout(0.2))

 critic.add(Dense(self.value_size, activation='linear', kernel_initializer='he_uniform'))

 critic.summary()

 critic.compile(loss="mse", optimizer=Adam(lr=self.critic_lr))

 return critic

 # using the output of policy network, pick action stochastically

 def get_action(self, state):

 policy = self.actor.predict(state, batch_size=1).flatten()

 return np.random.choice(27, 1, p=policy)

 # update policy network every episode

 def train_model(self, next_state, reward, done, final_state ,place, Error):

 target = np.zeros((1, self.value_size))

 advantages = np.zeros((1,27))

 value = self.critic.predict(state)[0]

 next_value = np.argmax(self.critic.predict(next_state)[0])

 if done:

 advantages[0][action] = reward - value

 target[0][0] = reward

 else:

 advantages[0][action] = reward + self.discount_factor * (next_value) - value

 target[0][0] = reward + self.discount_factor * next_value

 actor_loss = self.actor.fit(state, advantages, epochs=1, verbose=0)

 critic_loss = self.critic.fit(state, target, epochs=1, verbose=0)

 return actor_loss.history['loss'], critic_loss.history['loss']

if __name__ == "__main__":

 env = environment_seminare.environment()

 # get size of state and action from environment

 state = env.reset()

 state_size = 9

 action_size = 27

 action_index = np.array([p for p in itertools.product([-1,0,1], repeat=3)])

 # make A2C agent

 agent = A2CAgent(state_size, action_size)

 scores, episodes, rewards = [], [], []

 for e in range(EPISODES):

 done = False

 score = 0

 state = env.reset()

 state = np.reshape(state, [1, state_size])

 while not done:

 ind = np.array(agent.get_action(state),dtype='int32')

 action = action_index[ind][:]

 #print("action\n",action)

 next_state, reward, done, final_state ,place, Error = env.Step(state,action[0])

 next_state = np.reshape(next_state, [1, state_size])

 # if an action make the episode end, then gives penalty of -100

 agent.train_model(next_state, reward, done, final_state ,place, Error)

 reward = reward if not done or score == 49 else -10

 score += reward

 state = next_state

 if done:

 # every episode, plot the play time

 score = score if score == 50.0 else score + 10

 scores.append(score)

23

 episodes.append(e)

 #loss.append(loss)

 pylab.plot(episodes, scores, 'b')

 #print("episode:", e, " / SCORE:", score, " / REWARD:", reward, " / ERROR:", Error)

 # if the mean of scores of last 10 episode is bigger than 49

 # stop training

 if np.mean(scores[-min(10, len(scores)):]) > 49:

 sys.exit()

 # save the model

 if e % 50 == 0:

 agent.actor.save_weights("D:\psm_actor.h5")

 agent.critic.save_weights("D:\psm_critic.h5")

❖ Appendix-2 [2]:

Coding with Pytorch

"""

ALGORITHM - 2

System Engineering Assignment-2

@author: Murtaza Khuzema Basuwala, Pradeep Nutakki Chakravarthi

The algorithm is designed for PSM (Peristaltic Sorting Machine) environment

This code is referenced from 'https://www.datahubbs.com/two-headed-a2c-network-in-pytorch/'

"""

import torch

import torch.nn as nn

import torch.nn.functional as F

import numpy as np

import itertools

from collections import OrderedDict

import environment_seminare

import matplotlib.pyplot as plt

from matplotlib import gridspec

#%matplotlib inline

class actorCriticNet(nn.Module):

 def __init__(self, env, n_hidden_layers=4, n_hidden_nodes=25,

 learning_rate=5e-4, bias=False, device='cpu'):

 super(actorCriticNet, self).__init__()

 self.device = device

 self.n_inputs = 9

 self.n_outputs = 27

 self.n_hidden_nodes = n_hidden_nodes

 self.n_hidden_layers = n_hidden_layers

 self.learning_rate = learning_rate

 self.bias = bias

 self.action_space = np.array(self.n_outputs)

 # Generate network according to hidden layer and node settings

 self.layers = OrderedDict()

 self.n_layers = 2 * self.n_hidden_layers

24

 for i in range(self.n_layers + 1):

 # Define single linear layer

 if self.n_hidden_layers == 0:

 self.layers[str(i)] = nn.Linear(

 self.n_inputs,

 self.n_outputs,

 bias=self.bias)

 # Define input layer for multi-layer network

 elif i % 2 == 0 and i == 0 and self.n_hidden_layers != 0:

 self.layers[str(i)] = nn.Linear(

 self.n_inputs,

 self.n_hidden_nodes,

 bias=self.bias)

 # Define intermediate hidden layers

 elif i % 2 == 0 and i != 0:

 self.layers[str(i)] = nn.Linear(

 self.n_hidden_nodes,

 self.n_hidden_nodes,

 bias=self.bias)

 else:

 self.layers[str(i)] = nn.ReLU(nn.BatchNorm1d(9))

 self.body = nn.Sequential(self.layers)

 # Define policy head

 self.policy = nn.Sequential(

 nn.Linear(self.n_hidden_nodes,

 self.n_hidden_nodes,

 bias=self.bias),

 nn.ReLU(),

 nn.Linear(self.n_hidden_nodes,

 self.n_outputs,

 bias=self.bias))

 # Define value head

 self.value = nn.Sequential(

 nn.Linear(self.n_hidden_nodes,

 self.n_hidden_nodes,

 bias=self.bias),

 nn.ReLU(),

 nn.Linear(self.n_hidden_nodes,

 1,

 bias=self.bias))

 if self.device == 'cuda':

 self.net.cuda()

 self.optimizer = torch.optim.Adam(self.parameters(),

 lr=self.learning_rate)

 def predict(self, state):

 body_output = self.get_body_output(state)

 probs = F.softmax(self.policy(body_output), dim=-1)

 #print("PROBS", probs)

 return probs, self.value(body_output)

 def get_body_output(self, state):

 state_t = torch.FloatTensor(state).to(device=self.device)

 return self.body(state_t)

 def get_action(self, state):

25

 probs = self.predict(state)[0].detach().numpy().flatten()

 #print("PROBS", probs)

 a = np.random.choice(27, p=probs)

 #print("Index", a)

 return a

 #print("Its me", action2)

 def get_log_probs(self, state):

 body_output = self.get_body_output(state)

 logprobs = F.log_softmax(self.policy(body_output), dim=-1)

 #print("LOGPROBS", logprobs)

 return logprobs

class A2C():

 def __init__(self, env, network):

 self.env = env

 self.network = network

 self.ep_rewards = []

 self.kl_div = []

 self.policy_loss = []

 self.value_loss = []

 self.entropy_loss = []

 self.total_policy_loss = []

 self.total_loss = []

 #self.action_space = np.arange(27)

 def generate_episode(self):

 states, actions, next_states, rewards, dones, final_states, places, Errors = [], [], [], [], [], [], [], []

 counter = 0

 state = env.reset()

 state = np.reshape(state,[1,9])

 #print("STATE", state)

 action_index = np.array([p for p in itertools.product([-1,0,1], repeat=3)])

 total_count = self.batch_size * self.n_steps

 while counter < total_count:

 done = False

 while done == False:

 ind = np.array(self.network.get_action(state),dtype='int32')

 #print(ind)

 action = action_index[ind][:]

 #print(action_index)

 #print("ation in generate episode", action)

 next_state, reward, done, final_state, place, Error = env.Step(state,action)

 next_state = np.reshape(next_state, [1, 9])

 self.reward += reward

 states.append(state)

 actions.append(ind.tolist())

 final_states.append(final_state)

 next_states.append(next_state)

 places.append(place)

 rewards.append(reward)

 dones.append(done)

 Errors.append(Error)

 state = next_state

 #print("STATES", states)

 if done:

 self.ep_rewards.append(self.reward)

 self.state = self.env.reset()

26

 self.reward = 0

 self.ep_counter += 1

 if self.ep_counter >= self.num_episodes:

 counter = total_count

 break

 counter += 1

 if counter >= total_count:

 break

 return states, actions, final_states, rewards, places, dones, next_states, Errors

 def calc_rewards(self, batch):

 states, actions, rewards, final_states, places, dones, next_states, Errors = batch

 rewards = np.array(rewards)

 total_steps = len(rewards)

 state_values = self.network.predict(states)[1]

 next_state_values = self.network.predict(next_states)[1]

 done_mask = torch.ByteTensor(dones).to(self.network.device)

 next_state_values[done_mask] = 0.0

 state_values = state_values.detach().numpy().flatten()

 next_state_values = next_state_values.detach().numpy().flatten()

 G = np.zeros_like(rewards, dtype=np.float32)

 td_delta = np.zeros_like(rewards, dtype=np.float32)

 dones = np.array(dones)

 for t in range(total_steps):

 last_step = min(self.n_steps, total_steps - t)

 # Look for end of episode

 check_episode_completion = dones[t:t+last_step]

 if check_episode_completion.size > 0:

 if True in check_episode_completion:

 next_ep_completion = np.where(check_episode_completion == True)[0][0]

 last_step = next_ep_completion

 # Sum and discount rewards

 G[t] = sum([rewards[t+n:t+n+1] * self.gamma ** n for

 n in range(last_step)])

 if total_steps > self.n_steps:

 G[:total_steps - self.n_steps] += next_state_values[self.n_steps:] \

 * self.gamma ** self.n_steps

 td_delta = G - state_values

 return G, td_delta

 def train(self, n_steps=50, batch_size=2, num_episodes=2000,

 gamma=0.90, beta=1e-3, zeta=1e-3):

 self.n_steps = n_steps

 self.gamma = gamma

 self.num_episodes = num_episodes

 self.beta = beta

 self.zeta = zeta

 self.batch_size = batch_size

 self.state = self.env.reset()

 self.reward = 0

 self.ep_counter = 0

 while self.ep_counter < num_episodes:

 batch = self.generate_episode()

27

 G, td_delta = self.calc_rewards(batch)

 states = batch[0]

 #print(states)

 actions = batch[1]

 self.update(states, actions, G, td_delta)

 print("\rMean Rewards: {:.2f} Episode: {:d} ".format(

 np.mean(self.ep_rewards[-10:]), self.ep_counter), end="")

 def plot_results(self):

 avg_rewards = [np.mean(self.ep_rewards[i:i + self.batch_size])

 if i > self.batch_size

 else np.mean(self.ep_rewards[:i + 1]) for i in range(len(self.ep_rewards))]

 plt.figure(figsize=(15,10))

 gs = gridspec.GridSpec(3, 2)

 ax0 = plt.subplot(gs[0,:])

 ax0.plot(self.ep_rewards)

 ax0.plot(avg_rewards)

 ax0.set_xlabel('Episode')

 plt.title('Rewards')

 ax1 = plt.subplot(gs[1, 0])

 ax1.plot(self.policy_loss)

 plt.title('Policy Loss')

 plt.xlabel('Update Number')

 ax2 = plt.subplot(gs[1, 1])

 ax2.plot(self.entropy_loss)

 plt.title('Entropy Loss')

 plt.xlabel('Update Number')

 ax3 = plt.subplot(gs[2, 0])

 ax3.plot(self.value_loss)

 plt.title('Value Loss')

 plt.xlabel('Update Number')

 plt.tight_layout()

 plt.show()

 def calc_loss(self, states, actions, rewards, advantages, beta=-0.001):

 actions = torch.LongTensor(actions).to(self.network.device)

 rewards_t = torch.FloatTensor(rewards).to(self.network.device)

 advantages_t = torch.FloatTensor(advantages).to(self.network.device)

 log_probs = self.network.get_log_probs(states).view(-1,27)

 log_prob_actions = advantages_t * log_probs[range(len(actions)), actions]

 policy_loss = -log_prob_actions.mean()

 action_probs, values = self.network.predict(states)

 entropy_loss = -self.beta * (action_probs * log_probs).sum(dim=1).mean()

 value_loss = self.zeta * nn.MSELoss()(values.squeeze(-1), rewards_t)

 self.policy_loss.append(policy_loss)

 self.value_loss.append(value_loss)

 self.entropy_loss.append(entropy_loss)

 return policy_loss, entropy_loss, value_loss

 def update(self, states, actions, rewards, advantages):

 self.network.optimizer.zero_grad()

 policy_loss, entropy_loss, value_loss = self.calc_loss(states, actions, rewards, advantages)

 total_policy_loss = policy_loss - entropy_loss

 self.total_policy_loss.append(total_policy_loss)

 total_policy_loss.backward(retain_graph=True)

 value_loss.backward()

 total_loss = policy_loss + value_loss + entropy_loss

28

 self.total_loss.append(total_loss)

 self.network.optimizer.step()

env = environment_seminare.environment()

net = actorCriticNet(env, learning_rate= 5e-4, n_hidden_layers=4, n_hidden_nodes=25)

a2c = A2C(env, net)

for i in range(10):

 a2c.train(n_steps=100, num_episodes=50000, beta=0.0001, zeta=.01)

a2c.plot_results()

References

[1] Peccia F. Batch normalization: theory and how to use it with Tensorflow. Available at:

https://towardsdatascience.com/batch-normalization-theory-and-how-to-use-it-with-

tensorflow-1892ca0173ad; 2018 [accessed 25.01.2019].

[2] https://www.facebook.com/christian.hubbs1. Two-Headed A2C Network in PyTorch -

DataHubbs. Available at: https://www.datahubbs.com/two-headed-a2c-network-in-

pytorch/; 2018 [accessed 23.01.2019].

[3] rlcode/reinforcement-learning. Available at: https://github.com/rlcode/reinforcement-

learning [accessed 27.11.2018].

